INFORMATION TECHNOLOGIES, NEURAL NETWORKS, AND MODERN LINGUISTICS: THE ROLE OF LANGUAGE AND IT TECHNOLOGIES
Abstract
The article examines the integration of information technologies and neural networks within modern linguistic research. It focuses on the evolution of artificial neural networks and their application in solving linguistic problems, including natural language processing, machine translation, and the development of intelligent agents. The study analyzes neural network architectures, training algorithms such as backpropagation, and structural optimization methods like genetic algorithms. The role of neural networks in handling complex linguistic structures, pattern recognition, and enhancing the efficiency of text analysis is critically evaluated. The article highlights practical implementations in optical character recognition and syntactic analysis, emphasizing the transformative impact of IT technologies on contemporary linguistics.
References
1. Neural Machine Translation: A Review // Journal of Artificial Intelligence Research. – 2019. – Vol. 61. – pp. 285–389.
2. The Roles of Neural Networks in Language Acquisition // Language and Linguistics Compass. – 2023. – Vol. 17, No. 7. – Article e70001.
3. Emergent Linguistic Structure in Artificial Neural Networks Trained by Self-Supervision // Proceedings of the National Academy of Sciences. – 2019. – Vol. 116, No. 42. – pp. 21342–21350.
4. Neural Network Methods for Natural Language Processing // Synthesis Lectures on Human Language Technologies. – 2017. – Vol. 10, No. 1. – pp. 1–232.
5. Абдусаттарова Н.Р. Применение нейронных сетей в автоматическом переводе текстов // Филология и языковедение. – 2022. – Т. 14, №3. – С. 102–110.
6. Tursunov, S. Application of Deep Learning Techniques in Uzbek Handwriting Recognition // Uzbek Journal of Information Technology and Data Science. – 2021. – Vol. 5, No. 2. – pp. 45–52.
7. Халилова Г.Ж. Нейросетевые технологии в задачах обработки естественного языка // Современные информационные технологии. – 2020. – Т. 8, №4. – С. 58–65.
8. Alimov, R., & Juraeva, M. Neural Network Approaches in Multilingual Machine Translation for Central Asian Languages // Central Asian Journal of Modern Science. – 2022. – Vol. 3, No. 1. – pp. 67–74.
9. Иванова И.П. Современные методы анализа текста с использованием ИИ // Вестник Московского университета. Серия 9. Филология. – 2021. – №5. – С. 114–123.
10. Karimova, D. Neural Networks in Linguistic Data Processing: A Case Study on Sentiment Analysis in Uzbek Language // Journal of Language Technology in Central Asia. – 2023. – Vol. 4, No. 1. – pp. 12–20.
11. Ахмедов У.А. Машинное обучение и нейронные сети в лингвистике: теоретические и практические аспекты // Научные исследования и разработки в Узбекистане. – 2022. – Т. 6, №2. – С. 85–93.
12. Smith, J. Advances in Neural Network Architectures for Natural Language Processing // Computational Linguistics Journal. – 2021. – Vol. 47, No. 3. – pp. 457–470.
13. Rakhimov, F. Optical Character Recognition for Uzbek Cyrillic and Latin Scripts Using Convolutional Neural Networks // International Journal of AI Research in Eurasia. – 2022. – Vol. 2, No. 4. – pp. 99–106.
14. Петров А.Н. Применение глубоких нейронных сетей для анализа тональности текста на русском языке // Информационные технологии и анализ данных. – 2023. – Т. 9, №1. – С. 145–152.
15. Johnson, L., & Kim, H. Transformer Models and Their Impact on Multilingual Natural Language Processing // Journal of Artificial Intelligence and Language Science. – 2020. – Vol. 12, No. 2. – pp. 210–225.