A METHOD FOR ENHANCING ACCURACY IN FACE RECOGNITION SYSTEMS USING HYBRID NEURAL NETWORKS

Authors

  • Nurjanov Furqatbek Reyimberganovich Author

Abstract

This article investigates a hybrid approach based on convolutional neural networks and Vision Transformer architectures to improve the accuracy of face recognition systems. The primary objective of the study is to enhance the quality and robustness of identification under challenging conditions, such as partial face occlusion (e.g., masks, glasses), low illumination, or images captured from angled viewpoints. The proposed hybrid model extracts local features through CNN layers and models global dependencies using Transformer blocks. By integrating local and global features, the approach aims to improve face recognition accuracy and overall system robustness.

References

1. Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1701–1708.

2. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823.

3. Nurjanov F.R. Method and algorithm for identifying the parameters of the image face person // International Journal of Science and Research (IJSR). Volume 8 Issue 6, June 2019, India 08/06/2019. 7 page. Research Gate Impact Factor (2018):0.28/ SJIF(2018)7.426

4. Dosovitskiy, A., et al. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations (ICLR).

5. Круглов В. В., Борисов В. В. Искусственные нейронные сети. Теория и практика. — 1-е. — М.: Горячая линия - Телеком, 2001. - С. 382. -ISBN 5-93517-031-0.

6. R. Gonzalez, R. Woods, S. Eddins Digital image processing in MATLAB. M .: Tekhnosfera, 2006, -616 p.

7. Nurjanov F.R. Method and algorithm for identifying the parameters of the image face person // International Journal of Science and Research (IJSR). Volume 8 Issue 6, June 2019, India 08/06/2019. 7 page. Research Gate Impact Factor (2018):0.28/ SJIF(2018)7.426

8. Russell, SJ, & Norvig, P. (2016). Sun’iy intellekt: zamonaviy yondashuv. Pearson Education Limited.

9. Абламейко С.В., Лагуновский Д.М. Обработка изображений: технология, методы, применение. Минск: Ин-т техн, кибернетики НАН Беларуси, 2009. 300с.

Downloads

Published

2026-01-11