QUYOSH ENERGIYASIDA ISITILADIGAN GIDROTERMAL KARBONIZATSIYA TEXNOLOGIYASI ORQALI OQOVA SUVLARNI BARQAROR TOZALASH

Authors

  • Iksanova Farida Rashidovna Author

Abstract

Mazkur maqolada quyosh energiyasida isitiladigan gidrotermal karbonizatsiya (HTC) texnologiyasi yordamida O‘zbekiston sharoitida oqova suvlar va nam biochiqindilarni barqaror tozalash imkoniyatlari tahlil qilinadi. HTC jarayoni 180–250 °C harorat va 20–40 bar bosim ostida organik chiqindilarni uglerodga boy gidroko‘mirga aylantirishga asoslanadi. Tadqiqotda Shveysariyaning Rheinmühle pilot loyihasi tajribasi, energiya rekuperatsiyasi, quyosh kollektorlari bilan integratsiya va chiqindilardan bioyoqilg‘i hamda bioo‘g‘it olish istiqbollari yoritilgan. Texnologiya O‘zbekistonning yuqori quyosh nurlanish resurslari sharoitida ekologik, energetik va iqtisodiy barqarorlikka erishish vositasi sifatida baholanadi.

References

1) IISD (2024). National State of the Environment Report: Uzbekistan. International Institute for Sustainable Development.

2) UNDP (2022). Uzbekistan: Water Security and Climate Adaptation Strategy 2030. UNDP Regional Bureau.

3) IEA (2021). Renewables 2021: Solar Heating and Cooling Outlook. International Energy Agency.

4) IEA Bioenergy Task 36 (2021). Hydrothermal Carbonization (HTC) of Wet Wastes: Global Status and Case Studies. IEA Publications.

5) Rezaei, H., et al. (2020). Hydrothermal Carbonization of Sewage Sludge: Carbon Efficiency and Product Characterization. Journal of Cleaner Production, 270, 122–132.

6) Lynam, J., Reza, M. T., et al. (2017). Characterization of Hydrochars Produced from Food Waste and Manure. Bioresource Technology, 237, 37–44.

7) Smith, A., & Chen, J. (2020). Solar Integration in HTC Reactors: Molten Salt Heat Transfer. Renewable Energy, 153, 930–940.

8) IEA Bioenergy (2022). Nutrient Recovery and Heavy Metal Fate in HTC Process. IEA Task 36 Report.

9) Mehli, R., Zumstein, M., et al. (2021). Rheinmühle HTC Pilot Project Final Report. Innovationscampus Rheinmühle, Switzerland.

10) IEA Bioenergy Task 33 (2023). Carbon Fixation and CO₂-Equivalent Savings through Hydrochar Production. IEA Publications.

11) Shan, J., & Chen, L. (2023). Pathogen Inactivation and Nutrient Transfer in HTC of Sewage Sludge. Waste Management, 157, 84–96.

12) SFOE (2022). Pilot Solar-Thermal HTC Demonstration Program. Swiss Federal Office of Energy.

13) JSST (2021). Helminth Egg Inactivation Standards for Biosolids. Japan Society for Sanitation Technology.

14) FAO (2022). Biochar Use in Sustainable Agriculture: Soil Structure and Nutrient Cycling. FAO Soils Bulletin 98.

15) FAO (2023). Circular Bioeconomy for Carbon Sequestration. FAO–UNEP Joint Publication.

16) Chen, Y., et al. (2021). Reactor Heat Integration and Insulation in HTC Systems. Journal of Environmental Chemical Engineering, 9(5), 105–112.

17) FAO (2023). HTC-Derived Biofertilizer Field Trials in Central Asia. FAO Regional Soil Initiative.

18) Wang, L., & Chen, R. (2020). Co-Hydrothermal Carbonization of Manure and Straw Mixtures. Bioresource Technology, 314, 123–130.

19) FAO (2022). Field Application of Biochar in Arid Soils: Guidelines and Case Studies. Rome.

20) Zhou, X., & Kim, D. (2023). Comparison of HTC Liquor and Hoagland Nutrient Solution in Plant Growth. Agronomy Journal, 115(7), 3212–3223.

21) FAO (2024). HTC-Derived Biochar in Soil Structure Improvement. FAO Land and Water Division Report.

22) Eisenberg, D. (2021). Hydrochar Energy Potential and Calorific Value Analysis. Energy Reports, 7, 1593–1602.

23) UNEP (2024). HTC for Carbon Negative Waste Management Systems. United Nations Environment Programme.

24) Reza, M. T., & Becker, J. (2021). Techno-economic assessment of hydrothermal carbonization for sewage sludge treatment. Energy Conversion and Management, 243, 114406. https://doi.org/10.1016/j.enconman.2021.114406

25) Gao, Y., & Chen, J. (2020). Nitrogen transformation pathways during hydrothermal carbonization of sewage sludge. Bioresource Technology, 314, 123668.

26) Wang, L., et al. (2020). Co-hydrothermal carbonization of agricultural and sewage wastes for biochar production. Journal of Cleaner Production, 278, 123402.

27) Zhang, J., & Shen, Q. (2021). Nitrogen and phosphorus retention in hydrochar from municipal sludge. Science of the Total Environment, 765, 142749.

28) Yu, J., & Wang, H. (2021). Heavy metal partitioning during hydrothermal carbonization of contaminated sludge. Chemosphere, 271, 129558.

29) FAO. (2022). Biochar in sustainable soil management and pollution control. FAO Soils Bulletin No. 98.

30) IEA Bioenergy Task 33. (2021). Integration of hydrothermal carbonization with anaerobic digestion for nutrient recovery. IEA Publications.

31) UNIDO. (2022). Pilot projects on renewable energy in waste-to-resource systems. United Nations Industrial Development Organization, Vienna.

32) IEA Bioenergy. (2022). Decentralized biomass valorization via HTC: Small-scale plant design guidelines. IEA Bioenergy Publications.

33) Mumme, J., et al. (2022). Energy recovery efficiency in continuous HTC reactors. Bioresource Technology Reports, 18, 101015.

34) Chen, Y., et al. (2021). Reactor heat integration and insulation optimization in HTC systems. Journal of Environmental Chemical Engineering, 9(5), 105–112.

35) Reza, M. T., & Becker, J. (2023). Scaling and economic feasibility of solar-heated HTC systems. Energy Conversion and Management, 292, 117386.

36) FAO. (2023). HTC-Derived Biofertilizer Field Trials in Central Asia. Food and Agriculture Organization of the United Nations, Regional Soil Initiative, Rome.

37) Li, Z., & Chen, S. (2023). Design optimization of solar collectors for medium-temperature thermal processes (150–250 °C) in hydrothermal carbonization systems. Solar Energy, 255, 164–178. https://doi.org/10.1016/j.solener.2023.03.012

38) FAO. (2022). Field Application of Biochar in Arid Soils: Guidelines and Case Studies. Food and Agriculture Organization of the United Nations, Rome.

39) Zhou, X., & Kim, D. (2023). Comparison of HTC liquor and Hoagland nutrient solution in greenhouse plant growth. Agronomy Journal, 115(7), 3212–3223. https://doi.org/10.1002/agj2.21110

40) FAO. (2024). HTC-Derived Biochar in Soil Structure Improvement: Technical Report. FAO Land and Water Division, Rome.

41) Eisenberg, D., & Müller, T. (2021). Hydrochar energy potential and calorific value analysis for rural heating applications. Energy Reports, 7, 1593–1602. https://doi.org/10.1016/j.egyr.2021.02.118

Downloads

Published

2025-11-02