GLOVE: GLOBAL VECTORS FOR WORD REPRESENTATION

Authors

  • Abdulatif Meyliev Rakhmatillayevich Author

Abstract

GloVe (Global Vectors for Word Representation) is a widely used method for generating word embeddings, which effectively leverages global co-occurrence statistics of words in a corpus. Unlike context-based models like Word2Vec, GloVe directly utilizes word co-occurrence matrices to learn semantic relationships. This article provides a detailed theoretical explanation of the GloVe model, its training methodology, mathematical formulation, its application in Natural Language Processing (NLP), and a comparison with other embedding models.

References

1. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation.

2. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).

3. Goldberg, Y. (2016). A Primer on Neural Network Models for NLP.

4. Jurafsky, D., & Martin, J. H. (2023). Speech and Language Processing (3rd ed. draft).

5. Raxmatillayevich M. A. SUN'IY INTELLEKTGA ASOSLANGAN FARMATSEVTIKA SANOATI //SCIENTIFIC ASPECTS AND TRENDS IN THE FIELD OF SCIENTIFIC RESEARCH. – 2025. – Т. 3. – №. 31. – С. 98-101.

6. Ишкобилов Ф. Х. КОМПЬЮТЕР ИМИТАЦИОН МОДЕЛЛАР АСОСИДА ЯРАТИЛГАН ВИРТУАЛ ЛАБОРАТОРИЯ УМУМТАЪЛИМ МАКТАБЛАРИДА ЎҚИТИШ ВОСИТАСИ СИФАТИДА //Academic research in educational sciences. – 2023. – Т. 4. – №. 1. – С. 215-221.

7. Ishkobilov F. KH “Technology of creating a virtual laboratory of the structure and movements of euglenoids from biology on the base of computer simulation models” Eurasian Scientific Herald.

8. Normurodov A. D., Rustamov A. B. INTERNET-BUYUMLAR IOT AFZALLIKLARI VA XAVFSIZLIK MUAMMOLARI //INNOVATSION IQTISODIYOTNI SHAKLLANTIRISHDA AXBOROT KOMMUNIKATSIYA TEXNOLOGIYALARINING TUTGAN O'RNI. – 2023. – Т. 1. – №.

9. Rustamov S. O‘qitishning uslubiy tizimining muvofiqlashtiruvchi modelini shakllantirish vazifalari //«ACTA NUUz». – 2024. – Т. 1. – №. 1.7. – С. 176-178.

10. Bexzod Norboyev, Akhmadjon Tursunov, Shamiljon Rustamov. Comparing Random Forest and Support Vector Machines. Excellencia: International Multi-disciplinary Journal of Education (2994-9521). 2024/7/25

11. Bexzod Norboyev, Akhmadjon Tursunov, Shamiljon Rustamov. Comparing Random Forest and Support Vector Machines. Excellencia: International Multi-disciplinary Journal of Education (2994-9521). 2024/7/25

12. Kadyrov B. K. Problems and solutions in teaching the database in higher education (on the example of technical education) //current research journal of philological sciences. – 2022. – Т. 3. – №. 07. – С. 35-41

13. Ортиков М.С. Расчет переходных процессов в соленоиде размагничивающего устройства рельсовых плетей при включении его на импульсное воздействие //Universum: технические науки. – 2020. – №. 10-3 (79). – С. 46-52.

Downloads

Published

2025-06-01