A PROBLEMWITH THE FRANKL CONDITION ON DIFFERENT PARTS OF THE SECTION EDGES ALONG THE DEGENERACY LINE SEGMENT FOR A MIXED-TYPE EQUATION WITH A SINGULAR COEFFICIENT

Authors

  • Mirsaburova Gulbakhor Mirakhmatovna Author

Abstract

The paper considers a problem with the Frankl condition on different parts of the cut edges along a segment of the degeneracy line for a mixed-type equation with a singular coefficient. The problem is investigated TF in the case  of , uniqueness of the solution of the problem TF and the existence of a solution TF to the singular Tricomi integral equation is proved.

References

1. Nakhushev A.M. On some boundary value problems for hyperbolic and mixed-type equations. // Differential equations. -1969. - vol. 5. - No. 1. - pp. 44-59.

2. Salakhitdinov M. S., Mirsaburov M. A problem with a non-local boundary condition on a characteristic for one class of mixed-type equations. // Mathematical notes. -2009. - T. 86. - No. 5. - pp. 748-760.

3. Salakhitdinov M. S., Urinov A. K. Boundary value problems for mixed-type equations with a spectral parameter. Tashkent: Fan. -1997. - p. 165.

4. Babenko K. I. On the theory of mixed-type equations. Doctoral dissertation (Library of the Steklov Mathematical Institute of the Russian Academy of Sciences), -1952.1952.

5. Bitsadze A.V. Equations of mixed type. // Publishing House of the USSR Academy of Sciences, Moscow. 1959 – - p. 164.

6. Mirsaburov M. Boundary value problem for one class of mixed-type equations with the Bitsadze-Samarsky condition on parallel characteristics. // Differential equations. -2001. - vol. 37. - No. 9. - pp. 1281-1284.

7. Polosin A. A. On the unique solvability of the Tricomi problem for one special domain. // Differential equations. -1996. - vol. 32. - No. 3. - pp. 394-401.

8. Ashurov R.R., Zunnunov R.T. An Analog of the Tricomi Problem for a Mixed-Type Equation with Fractional Derivative. Inverse Problems // Lobachevskii journal of mathematics, Vol. 44 No. 8, 2023. P.3225-3240.

9. Smirnov M. M. Equations of mixed type. Moscow: Nauka. -1970. - p. 296.

10. Smirnov M. M. Equations of mixed type. Moscow: Vysshaya shkola. -1985. - p. 304.

11. Weinstein A.Оn the wave equation and the equation Euler-Poisson. TheFifht symposium in Applied Math. Macbaw-Hill-York. -1954. -pp.137-147.

12. Karatoprakliev G. On a generalization of the Tricomi problem. //Dokl. ACADEMY OF SCIENCES OF THE USSR. -1964. - vol. 158. - No. 2. - pp. 271-274.

13. Mikhlin S. G. On the F. TRICOMI integral equation // Dokl. Academy OF SCIENCES OF THE USSR. -1948. - vol. 59. - No. 6. - pp. 1053-1056.

Downloads

Published

2025-11-02