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1. Introduction. 

The first fundamental research for a mixed-type equation was performed by 

the Italian mathematician Fr.Tricomi. After this work, the theory of problems for 

degenerate hyperbolic, elliptic, and mixed-type equations was developed in the 

fundamental research of foreign scientists E. Holmgren, S. Gellerstedt, and from 

domestic students, a significant contribution to the development of the theory of 

mixed-type equations was made in the works of M. S. Salakhitdinov, T. D. 

Dzhuraev, R. R. Ashurov, and B. Islomov.For further development of the theory of 

boundary value problems for mixed equations, an important place was occupied by 

the work (mixed problem) by A. M. Nakhushev, where in the hyperbolic part the 

nonlocal condition pointwise connects the values of the desired solution on both 

characteristics [1]. 

2. Problem statement  

Consider the equation 

(1) 

12/ 0  m
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where is in a finite simply connected domain of the complex 

plane  bounded by a normal curve  with ends at 

points ,  and the characteristics  and  equations (1). 

In the Tricomi problem, the value of the desired function is set at all points 

of the characteristic: . In this chapter, we study the correctness of the 

problem where a part of the characteristic  is freed from the boundary condition 

and this missing Tricomi condition is equivalently replaced by the non-local Frankl 

condition [2, 3] on different parts of the edges of the section along the degeneracy 

segment . Denote by and the parts of the domain that lie in the half –

planes and , respectively , and by and , respectively, the points of 

intersection of the characteristics and with the characteristic originating 

from the point , where is the axis interval . Let 

be a diffeomorphism from the set of points of the segment to the set of points 

of the segment , and  . As an example of such a 

function, we give a linear function , where  . 

Problems for a mixed-type equation where a part of the characteristic is 

freed from the Tricomi boundary condition and this missing Tricomi condition is 

equivalently replaced by other conditions are investigated in [4,5,6,7]. 

A task . You need to find a function in the scope that meets the 

following conditions: 

1. - is continuous in each of the closed regions and ; 

2. and satisfies equation (1) in this domain; 

3. is a generalized solution of the class [8,9,10] in the domain  

4. on the segment -line of the parabolic degeneracy of equation (2), the 

general gluing conditions [12] are satisfied 

(2) 

(3) 

where are given continuously differentiable functions on , 

and the limits (3) for , may have 

singularities of order lower than, where . 

5. Performed by 
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;                              (4) 

;                     (5) 

(6) 

where   , ,

 , and 

.                       (7) 

Condition (6) is analogousto the Frankl condition [2,3]. Linking the values of 

the desired function at the upper and lower edges of the sections along the 

segments and, respectively . 

Let's introduce the notation 

(8)
 

(9)
 

By virtue of notations (8) and (9), the localFrankl displacement condition (6) 

takes the form 

(10) 

where 

 

and we write the general conjugation condition in the form 

(11) 

(12) 

3. Investigation of the problem in the case and uniqueness of 

the solution of the problem . 

By virtue of the Darboux formula , the modified Cauchy problem with 

initial data (8), which gives a solution in the domain, is not difficult to obtain the 

following equation 

.                            (13)
 

Which is the first functional relation between and introduced on the 

axis from the region where 

(14)
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.
 

By virtue of the gluing conditions (11) and (12), relation (14) is written as 

(15)
 

(16)
 

Equality (14) is the first functional relation between unknown functions

and the one introduced to the interval from the domain  

Theorem 1.  Solution of the problem for and 

(17) 

it reaches its positive maximum and negative minimum in a closed region at the 

points of the curve . 

Proof. Let be a solution of the problem satisfying the conditions of 

Theorem 1. It is obvious that, by virtue of the extremum principle, the desired 

solution of the problem at the inner points of the domain does not reach 

its positive maximum and negative minimum. 

Suppose that the function reaches its positive maximum at some inner 

point  интервала of the axis interval . 

By virtue of the inequality , the corresponding homogeneous 

condition (10) (where ) implies that ( ,0) ( ( ,1)).P EB c    

Taking into account from (3.1.10) (where ) we have , 

therefore  Тогда , In this case, by virtue of the extremum 

principle for operators and fractional differentiation [9] at the 

point of positive maximum of the function from (15) (where ) we have

, On the other hand, at this point, by virtue of the well-known analog of the 

Zaremba-Giraud extremum principle, we have  

The resulting contradiction shows that  

Thus, the desired solution does not reach its positive maximum in the region 

at points in the region . 

Similarly, as above, it can be shown that the function of its negative 

minimum in the domain also does not reach at points in the points of the 

domain . 
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Consequently, the desired solution reaches its positive maximum and 

negative minimum in the region at the points of the curve . 

Theorem 1 is proved. 

Theorem 1 implies the following 

Consequence. Problems in solving inequalities (17) have at most one 

solution. 

4. Reducing the existence of a solution  to a singular Tricomi 

integral equation. 

Theorem 2. Problem when the condition is met 

(18) 

uniquely solvable, where  . 

Proof. In the domain , the solution of equation (1) satisfying the conditions 

 

given by the formula 
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It is not difficult to verify that 

 

 

.                               (21)
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,                             (24) 

where 

(25) 

Converting the expression 

.                     (26)
 

Calculate the internal integral 
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Here we perform the integration operation in parts : 
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(29) 

It is also not hard to get that 

(30)
 

Now, substituting (29) - (30) into (24), we obtain the following singular 

integral equation with respect to the unknown function : 

,                      (31) 

where , 

. 

Note that the kernel of equation (31) has a singular singularity only for

, since, equation (31) holds only for , taking this remark into 

account, we transform equations (31) to the form 

 

,   .                        (32)
 

In the interval integral , the right-hand side of (32), by replacing the 

variable integration , taking into account equality , 

we obtain 
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Equations (33) are transformed to the form 

,   (34) 
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-regular operator, 

.
 

The first integral operator of the right-hand side of (34) is not regular, since the 

integral expression under has an isolated first-order singularity, and 

therefore this term in (34) is distinguished separately. 

Temporarily assuming that the right-hand side of equation (34) is a known 

function, we rewrite it as 

(35a)
 

where 

.                       (36)
 

Theorem 2 is proved. 

5. Regularization of the singular Tricomi integral equation 

In equation (35a), we introduce the notation ,

, and transform it to the form 

.                   (37)
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The function is holomorphic in the entire plane except for the points of 

the set of the real axis, and if . 

By virtue of the Sokhotsky-Plemel formulas on the interval , we have 

,                                    (39) 

.                        (40) 

Here are the limit values of the function , when the point 

tends to the real axis, respectively, from the upper or lower half-plane. 

By virtue of formulas (39) and (40), equation (37) is rewritten as 
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Using these functions, equations (41) and (44) can be combined into one 

equation 

.                         (47) 

Thus, the problem of finding a solution to the singular integral equation (46) 

was reduced to the Riemann problem of the theory of functions of a complex 

variable: find a function that vanishes at infinity , is holomorphic, both in the 

upper and lower half-plane, and on the real axis satisfies condition (46). 

First, we solve the following homogeneous problem: find a function bounded 

at infinity that is holomorphic in both the upper half-plane and the lower half-
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necessary calculations taking into account (46) , andh equalities

, it is not difficult to verify that 

.                          (54)
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