

CELL INJURY, CELL DEATH, AND CELLULAR AGING: MECHANISMS, MORPHOLOGY, AND BIOLOGICAL SIGNIFICANCE

<https://doi.org/10.5281/zenodo.18240422>

Allanazarov Ismoil Musurmonkulovich

*Scientific supervisor of the department
of Pathological anatomy Tashkent State Medical University*

Bakhodirov Khasan Behzod ogli

*3nd year student Faculty of medicine
Tashkent State Medical University,
xasanbaxodirov2006@gmail.com*

Introduction

The maintenance of cellular homeostasis is essential for the survival and proper functioning of multicellular organisms. Cells constantly interact with their internal and external environments and are exposed to a wide range of physiological and pathological stimuli. Although cells possess adaptive mechanisms that allow them to respond to stress, these mechanisms are finite. When the intensity or duration of a harmful stimulus exceeds the adaptive capacity of the cell, cellular injury occurs. Cell injury is therefore a central concept in pathology and underlies the development of most diseases (Kumar et al., 2021).

Cell injury is not a discrete event but a dynamic and progressive process that ranges from mild, reversible alterations to severe, irreversible damage leading to cell death. Depending on the nature of the injury and the cell's response, damaged cells may recover, undergo regulated cell death such as apoptosis, or die through unregulated mechanisms such as necrosis. In addition to acute injury, cells are subject to gradual functional decline over time, known as cellular aging, which limits regenerative capacity and contributes to age-related diseases (López-Otín et al., 2013).

This report presents an integrated analysis of the causes of cell injury, cellular responses leading to reversible or irreversible damage, morphological features of injured cells, principal pathways of cell death, underlying mechanisms of injury, and the biological basis of cellular aging.

Methods

This work is based on a comprehensive review and synthesis of established knowledge from general pathology, cell biology, and molecular medicine. The analysis integrates classical morphological observations from light and electron microscopy with biochemical and molecular mechanisms described in authoritative

pathology textbooks and peer-reviewed literature. Rather than experimental methods, a conceptual and descriptive approach is used to correlate structural changes with functional disturbances and molecular events that define cell injury, death, and aging (Kumar et al., 2018).

Results

Causes of Cell Injury

Cells may be injured by a wide variety of harmful influences, which can be broadly categorized as hypoxic, chemical, physical, biological, immunological, and nutritional. Among these, hypoxia is one of the most common and clinically significant causes of cell injury. Hypoxia occurs when tissues receive inadequate oxygen, most often due to ischemia resulting from reduced blood flow. Oxygen deprivation impairs mitochondrial oxidative phosphorylation, leading to reduced ATP production and failure of energy-dependent cellular processes (Kumar et al., 2021).

Chemical agents and toxins represent another major category of injurious stimuli. These include environmental pollutants, drugs, alcohol, and heavy metals. Some toxins directly damage cell membranes or proteins, while others are metabolized into reactive intermediates that induce oxidative stress and DNA damage (Elmore, 2007). Physical agents such as mechanical trauma, extreme temperatures, ionizing radiation, and electrical injury also disrupt cellular structures. Ionizing radiation is particularly harmful because it generates free radicals that damage DNA, proteins, and lipid membranes (Galluzzi et al., 2018).

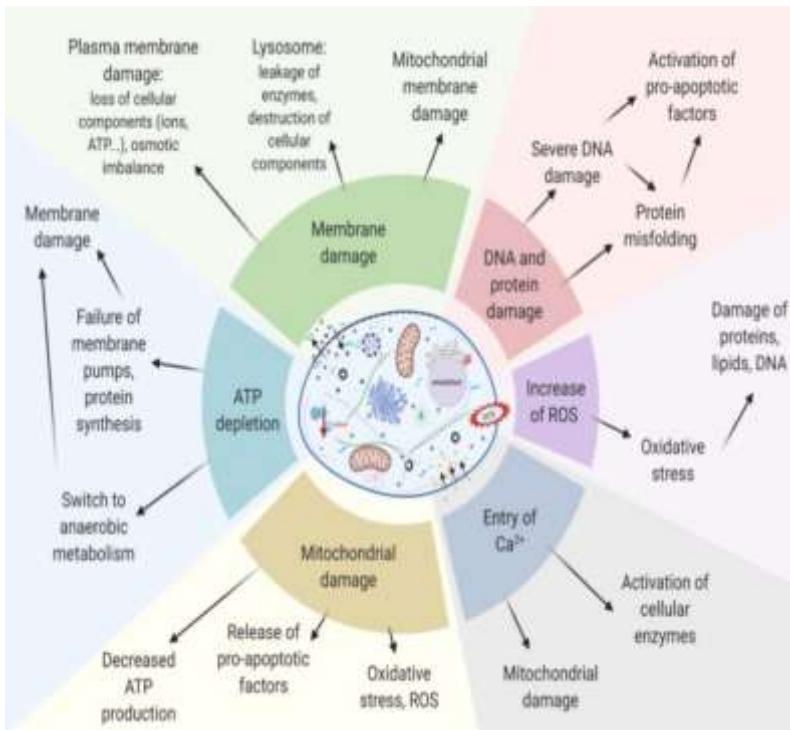
Biological agents, including bacteria, viruses, fungi, and parasites, can injure cells through direct cytopathic effects or by triggering inflammatory and immune responses. Immunologic reactions themselves can become sources of injury, as observed in autoimmune diseases and chronic inflammatory conditions. Nutritional imbalances, whether due to deficiency or excess, impair cellular metabolism and structural integrity, increasing susceptibility to injury and degeneration (Kumar et al., 2018).

Cellular Responses to Injury: Reversible and Irreversible Damage

The cellular response to injury depends on the severity and duration of the insult. In early or mild injury, cells typically undergo reversible changes. Reversible cell injury is characterized by functional impairment and structural alterations that can be corrected if the damaging stimulus is removed. One of the earliest manifestations of reversible injury is cellular swelling, also known as hydropic change, which results from failure of ATP-dependent ion pumps in the plasma membrane (Kumar et al., 2021).

As sodium accumulates intracellularly, water follows, leading to swelling of the cytoplasm and organelles. Another form of reversible injury is fatty change, particularly evident in hepatocytes and myocardial cells. Fat accumulation reflects impaired lipid metabolism rather than permanent structural damage. At this stage, restoration of normal conditions allows complete recovery of cellular structure and function (Kumar et al., 2018).

If injury persists or intensifies, cells progress to irreversible injury. The transition from reversible to irreversible damage marks the point at which recovery is no longer possible. This stage is characterized by severe mitochondrial dysfunction, profound ATP depletion, and irreversible loss of membrane integrity. Once mitochondrial membranes are damaged beyond repair, oxidative phosphorylation cannot be restored. Simultaneously, increased permeability of the plasma membrane permits excessive calcium influx, activating destructive enzymes and accelerating cellular degradation (Galluzzi et al., 2018).


Morphology of Cell Injury

The morphology of injured cells closely reflects underlying biochemical and functional disturbances. In reversible injury, light microscopy reveals cellular swelling, pale cytoplasm, and occasionally fatty change. Electron microscopy demonstrates swelling of mitochondria, dilation of the endoplasmic reticulum, detachment of ribosomes, and blebbing of the plasma membrane. These alterations indicate impaired metabolism but preserved cell viability (Kumar et al., 2021).

In irreversible injury, morphological changes become more severe and diagnostic. Disruption of the plasma membrane is evident, and lysosomal membranes rupture, releasing hydrolytic enzymes into the cytoplasm. Mitochondria exhibit dense amorphous deposits and loss of cristae. Nuclear changes are particularly characteristic and include pyknosis, marked by chromatin condensation; karyorrhexis, involving nuclear fragmentation; and karyolysis, the dissolution of nuclear material. These nuclear alterations are hallmarks of cell death and are commonly observed in necrotic tissues (Kumar et al., 2018).

Cell Death Pathways

Cell death occurs through distinct biological pathways, primarily necrosis and apoptosis. Necrosis is traditionally considered an uncontrolled form of cell death resulting from severe injury. It is characterized by cellular swelling, early loss of plasma membrane integrity, and leakage of intracellular contents into the surrounding tissue. This leakage provokes an inflammatory response, which often exacerbates tissue damage (Kumar et al., 2021).

Fig. 1. Mechanisms of cell injury¹

Apoptosis, in contrast, is a regulated and energy-dependent form of programmed cell death. It plays an essential role in embryonic development, tissue homeostasis, and elimination of damaged or potentially dangerous cells. Morphologically, apoptosis is characterized by cell

shrinkage, chromatin condensation, nuclear fragmentation, and formation of membrane-bound apoptotic bodies. The plasma membrane remains intact, preventing inflammation, and apoptotic cells are rapidly phagocytosed (Elmore, 2007).

At the molecular level, apoptosis is mediated by caspases, a family of proteolytic enzymes activated through intrinsic mitochondrial pathways or extrinsic death receptor pathways. Dysregulation of apoptosis is implicated in numerous pathological conditions, including cancer, autoimmune diseases, and neurodegenerative disorders (Galluzzi et al., 2018).

Mechanisms Underlying Cell Injury

Despite the diversity of injurious stimuli, the mechanisms of cell injury converge on a limited number of fundamental processes. ATP depletion is central to many forms of injury, particularly those caused by hypoxia and ischemia. Reduced ATP levels impair ion pumps, protein synthesis, and membrane repair mechanisms, leading to cellular dysfunction (Kumar et al., 2021).

Mitochondrial damage plays a dual role as both a cause and consequence of cell injury. Dysfunctional mitochondria generate reactive oxygen species and release pro-apoptotic factors such as cytochrome c. Oxidative stress, resulting from excessive production of reactive oxygen species, damages lipids, proteins, and DNA, thereby accelerating cellular injury (Finkel & Holbrook, 2000).

Disruption of calcium homeostasis further amplifies injury by activating phospholipases, proteases, and endonucleases that degrade essential cellular

¹ <https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-damage>

components. DNA damage and protein misfolding activate stress response pathways that may lead to apoptosis or permanent growth arrest if repair mechanisms fail (Galluzzi et al., 2018).

Cellular Aging

Cellular aging, or senescence, represents a progressive decline in cellular function and replicative capacity. One of the most important mechanisms of cellular aging is telomere shortening, which occurs with each cell division. When telomeres reach a critically short length, DNA damage responses are activated, leading to irreversible cell-cycle arrest, known as replicative senescence (Hayflick, 1965).

In addition to telomere attrition, cellular aging is driven by cumulative DNA damage, mitochondrial dysfunction, oxidative stress, and epigenetic alterations. Senescent cells often acquire a pro-inflammatory secretory phenotype that alters tissue microenvironments and contributes to age-related diseases. While senescence serves as a protective mechanism against malignant transformation, accumulation of senescent cells over time promotes tissue dysfunction and organismal aging (López-Otín et al., 2013).

Discussion

Cell injury, cell death, and cellular aging are interconnected biological processes that form the foundation of pathology and aging biology. Reversible injury represents a critical therapeutic window during which restoration of normal cellular function is possible. Once injury becomes irreversible, cell death is inevitable and contributes to tissue damage and organ failure. Morphological changes provide essential clues to the severity and stage of injury, while molecular mechanisms explain the transition from adaptation to death.

Necrosis and apoptosis represent distinct responses to injury with different consequences for inflammation and tissue integrity. Cellular aging further modifies responses to injury by reducing repair capacity and increasing vulnerability to stress. A detailed understanding of these processes is essential for interpreting disease mechanisms and developing strategies aimed at preserving cell viability, delaying aging, and improving tissue regeneration.

REFERENCES:

Kumar V, Abbas AK, Aster JC. *Robbins and Cotran Pathologic Basis of Disease*. 10th ed. Elsevier; 2021.

Kumar V, Abbas AK, Aster JC. *Robbins Basic Pathology*. 10th ed. Elsevier; 2018.

Galluzzi L, et al. Cell death mechanisms. *Nature Reviews Molecular Cell Biology*. 2018;19:1-17.

Elmore S. Apoptosis: A review of programmed cell death. *Toxicologic Pathology*. 2007;35(4):495-516.

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. *Nature*. 2000;408:239-247.

López-Otín C, et al. The hallmarks of aging. *Cell*. 2013;153(6):1194-1217.

Hayflick L. The limited in vitro lifetime of human diploid cell strains. *Experimental Cell Research*. 1965;37:614-636.